Applications and Opportunities with European Wood Modification

Holger Militz
Professor and Head Wood Biology and Wood Products
Georg-August University Göttingen
Germany

Own research background

• 1987 – 2000: TNO/ SHR
 Timber Research, The Netherlands
 – Heat treatment technology (PLATO)
 – Acetylation technology (Accoya)

• 2000 – today: University Göttingen
 – Belmadur
 – Silicones/ Silanes
 – Furfurylation (Kebony)
 – Waxes/ oils
 – Melamines/ phenols
Content of presentation

Wood modification

- Why?
- How (principles)
- Processes and material
- Products and markets
- Challenges

Wood: material of the future

- Ecological
- Sustainable
- Renewable
- Esthetical
- Traditional and modern
Wood: material of the future

- Energy efficient
- End-of-life: energy

Wood: material of the future?

Weak points:
- Moisture sensitive
- UV-stability
- Dimensional movements
- Resistance against fungi
- Soft surface
Wood: material of the future?

Maintenance problems due to dimensional instability and UV instability!

Solutions/ Alternatives?

- Use wood with high natural quality (as many tropical hardwoods)
 - Availability (mid term, long term)
 - Sustainability

- Use of wood preservatives
 - Toxicity issues
 - New biocides with low impact
 - Only durability item solved

- Use of new technologies for wood treatment
 - Wood modification!
What is „wood modification“?

What is wood modification?
Wood modification technology

- Heat treatment
- Acetylation (Accoya)
- DMDHEU (Belmadur)
- Furfurylation (Kebony)
- Silicone/Silane
- Oil / Wax/ Parafins

On the market production capacity

- Melamine resin

Production capacity built

- Chitosan/
 - Extractives etc.

??

Challenges: “from idea to commercial applications”
(PhD defense Stig Lande 2008/ ECWM 2009 Militz, Lande)

Technology development

- Raw materials
- Chemical reactions
- Process parameters

Product development

- Material interactions
- Quality control
- Market requirements

Business development

- Market
- Economy
- Intellectual property
Thermo treatment (TMT, Thermowood)
- no chemicals
- temperature 180° C to 220° C
- many wood species used
- difference between producers:
 - technology used

Status quo of production (2010): EUWID
(Europäischer Wirtschaftsdienst)

- Production in Finland, Germany, France, Croatia,
 Austria, Switzerland, Netherlands, Turkey, Sweden,
 Estonia
- Total capacity approx. 200,000 m³/year
- Finland approx. 100,000 m³/year
- Largest plants: 30,000 m³/year
- Smallest plants: 1,000 m³/year
- New plants planned/ under construction
Use class 3 (EN 335)
(Photos by Thermowood Association, Finland)

Use class 3 (EN 335)
(Photos by Mitteramskogler/ Austria)
Use class 1-2 (EN 335)
(Photos by Mitteramskogler/ Austria)
Modification technology based on liquids

- **Belmadur Technology**
 - (DMDHEU)
- **Kebony Technology**
 - (Furfurylation)
- **Accoya Titanwood**
 - (Acetylation)
- **Silanes/ Silicones**

Modification based on liquids

- liquid, catalyst
- vacuum-pressure impregnation
- drying and reaction
- drying temp: above 100 °C
Materials and methods

- NMM-BS impregnation of beech
- High temperature curing

Belmadur® Technology

Originally:
- textile modification
- (Easy Care Cotton)

DMDHEU
(1,3-dimethylol-4,5-dihydroxyethylene urea)
Cross-linking cellulose molecules

Process development of the recent years

- Solid wood
- Veneers
- Wood composites
 - Particles
 - Fibres
- WPC
Main focus last years: upscaling processes

Wood Treatment Curing Belmadur® Wood
Belmadur® Solution
Room temperature Temperature > 100° C

© = patent and registered trademark of BASF
Superheated steam process

Development of construction

<table>
<thead>
<tr>
<th>massive wood</th>
<th>wooden lamella</th>
<th>sandwich</th>
<th>functional layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>frames made from solid wood blocks</td>
<td>all lamella consist of same wood</td>
<td>Lamella consist of different wood</td>
<td>Choice of material regards the function</td>
</tr>
</tbody>
</table>

- Solltemp Luft [°C]
- Temperatur Luft [°C]
- Temperatur Holz [°C]
- Sollfeuchte Luft [%]
- Feuchte Luft [%]
- Feuchte Holz [%]
New product...new process...

BECKER belmadur®

DMDHEU particle boards
Kebony® Technology

![Chemical structure](image)

Basic materials
- Hydration from Furfural
- Furfural by distillation from waste of bagasse, corn, rice, peanut..

Kebony® production

Autoclave: 13 m length, 3.25 m diameter (0.1 - 13 bar)
Kebony® products

www.kebony.com

Kebony® Products
Kebony® products

Process:
- impregnation with acetic anhydride
- reaction at elevated temperatures
- post treatment (acetic acid)

Photos: SHR (NL)

Accoya® Titanwood

Photos: SHR (NL)
Production plant, Arnhem, NL

Accoya® products

Bridge in Sneek (NL)
Lorry bridge (60t lorries, 40 m length)
silicon based compounds

Hydrophilic and potentially reactive

Protection of masonry

Clothes (dyeing agents fixation)

Coupling agents (electrical circuit)

Hydrophobic

Hydrophobation of glass

Silanes, silicones

“water shade effects”
types of silanes

\[Y = \text{“Organo-functional groups”} \]
\[OX = \text{“Silicone-functional group OCH}_3, \text{ OC}_2H_5 \text{ etc.} \]

Material properties
TMT: new material, new properties

- Consistent colour through the piece
- Reduced equilibrium moisture content
- Improved durability against decay
- Reduced thermal conductivity
- Resin removed
- Reduced splitting strength
- Improved stability
- Slightly reduced bending strength

Capillary water uptake

- Water absorption coefficient shows the water uptake in relation to time [kg/m²/√h]
Outside weathering - results

- significant lower m.c. than untreated material
- uncoated furfurylated is lower than untreated/coated

Moisture content [%] of SYP samples over a period of 21 month
Surface appearance

Beech control 30% NMM-BS yellow modified beech 30% NMM-BS brown modified beech

30% NMM-BS yellow modified beech 30% NMM-BS brown modified beech
Sorption properties
(Tjeerdsma, Boonstra 1990’s)

Scotch pine
- Heat-treated adsorption
- Heat-treated desorption
- Non-treated adsorption
- Non-treated desorption

Equilibrium Moisture Content (%)

Relative Humidity (%)

Swelling and shrinking of wood species

Relative swelling of wood species from 0% moisture content to fibre saturation point

Swelling [%]

Treatment
- Interface
- teak
- pine heartwood
- pine sapwood
- oak
- beech

Radiale swelling
Tangentielle swelling
Brinell hardness (parket flooring)

- *Pinus sylvestris*
- *Tectona grandis*
- *Fagus sylvatica*

Hardness [N/mm²]

- Untreated
- 10% concentration of DMDHEU
- 30% concentration of DMDHEU
- 50% concentration of DMDHEU
- 80% concentration of DMDHEU

MOE in bending mode (DMDHEU)

(Bollmus 2010)
Impact bending strength
(Bollmus 2010)

Degradation of beech wood after 32 weeks in soil contact (ENV 807)
Main material properties gained with NMM

- Durability improvement

![Graph showing material properties gained with NMM]

Pine modified with 10% NMM after 16 weeks EN 113; DBU-Report, Az: 26869 (2009)

Fungal resistance as function of process conditions
(Tjeerdsma, Militz 2002)

Pinus silvestris

- Soil block test
- Weight loss after 54 weeks

![Graph showing fungal resistance as function of process conditions]

EN 113; DBU-Report, Az: 26869 (2009)
Termite resistance: test fields Australia, Portugal, lab tests Spain

Results *Coptotermes acinaciformis*

<table>
<thead>
<tr>
<th>Specimens</th>
<th>Mass loss [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scots pine Feeder</td>
<td>DMDHEU 1.3 M</td>
</tr>
<tr>
<td>Scots pine DMDHEU</td>
<td>2.1 M</td>
</tr>
<tr>
<td>Scots pine DMDHEU</td>
<td>1.3 M</td>
</tr>
<tr>
<td>Slash pine DMDHEU</td>
<td>2.1 M</td>
</tr>
<tr>
<td>Slash pine DMDHEU</td>
<td>1.3 M</td>
</tr>
<tr>
<td>Beech DMDHEU</td>
<td>2.1 M</td>
</tr>
<tr>
<td>Beech DMDHEU</td>
<td>1.3 M</td>
</tr>
</tbody>
</table>
Wood - Treatability / Permeability

No obvious effect for thermowood

Wood - Treatability / Permeability

Obvious effect for impregnation technology
Basis materials for wood modification

- Easy „treatable“
- Large quantities
 - Pines
 - Poplars
 - Beech?
 - Eucalypts?
 - Ash? Alder?
 - Other fast growing wood species!

Challenge:
processing, costs and markets
Other factors of concern to clients...

- Environmental concerns
 - Emissions to air
 - Emissions to water
 - Human tox
 - Eco tox
 - Working environment

- Machinability and further processing
 - Tools
 - Material homogenity
 - Glueability/ paintability
 - End product performance

- Disposal/ recycling
 - Reuse of fibres?
 - Energy – burning?
 - Land fill

Potential markets for modified wood

Outdoor
- Decking
- Roofing
- Utility poles
- Rail ties
- Fences
- Garden furniture
- Bridges
- Marine applications
- And more...

Indoor
- Flooring
- Windows
- Doors
- Furniture
- Mouldings
- And more...

- Furniture, Thermowood
- Decking, Accoya
- Roofing, Kebony
- Floor, Kebony
- Bridge, Accoya
- Decking, Belmadur
- Chair, Belmadur
Challenge: markets

- Biocide treated wood
 - Costs!!
 - Special products

- Markets of tropical hardwoods
 - use classes 1-5
 - „high quality”

- Special products with diverse functions

ECWM European Conferences on Wood Modification

- ECWM 6: Sept. 2012 in Ljubljana, Slovenia
- ECWM 2014: Lisbon/ Portugal
- ECWM 2016: Helsinki/ Finland

(Proceedings ECWM 1-6: contact me!)
Thank you for your attention!

10 % NMM, 20 x magnification, ash