Drying Sorted Lumber
Prior and after drying (re-drying)

by
Luiz Oliveira & Diego Elustondo

DryTech 2006
- Rotorua/New Zealand – Nov 23/24
- Melbourne/Australia – Nov 27/28
Drying Sorted Lumber

Presentation Outline:

1. Problems / Issues
2. Sorting in western Canada
3. Sorting prior to drying
4. Sorting technologies
5. An industrial scale experiment
6. OASiS® simulation
7. Sorting after drying // re-drying

Typical BC SPF kiln installations

General Characteristics:

- \(W_n \approx 180,000 \text{ kg (\sim 400,000 lbs)} \)
- Energy input: 15 – 25 MMBtu/h (\sim 7,300 kW)
- Drying times: 35 – 45 hours
Drying Sorted Lumber

Industrial Problems/Issues:

1) Longer drying times
2) Energy Consumption
3) Drying degrade (over-drying)
4) Non-uniform final MC (wet lumber)
5) Excessive shrinkage (lumber size)

What do we usually do about those problems?
Drying Sorted Lumber

- Drying schedule
- Equalization
- Variable air velocity
- Longer drying times
- Lower temperatures
- Higher temperatures
- Steam, water spray
- Improve package quality
- Kiln maintenance (heat)
- In-kiln moisture sensors
- Weight restraint
- Training

Factors that influence our results
Drying Sorted Lumber

Log diameter

Storage Conditions

Sawing
Drying Sorted Lumber

Kiln Conditions

Lumber Preparation

Drying Sorted Lumber
Drying Sorted Lumber

and additionally...

- Initial Moisture Content
- Species
- Drying schedule

In Western Canada:

→ main species: SPF

Two Schools of Thought:

Sort by species
Sort by Moisture Content

Also:
by species & by MC
Drying Sorted Lumber

$ impact

Sorting Before Drying
Available Technologies

Sorting Technologies available in Canada:

- a) MC & Density
- b) Weight
- c) Species
- d) MC
Drying Sorted Lumber

a) MC & density (NMI)

b) Weight
c) Species

Drying Sorted Lumber

d) Infrared radiation

Drying Sorted Lumber
Drying Sorted Lumber

an industrial scale experiment

Approach

Lumber Sample #1
OASIS®
Best Sorting Solution Based on a sorting system

Lumber Sample #2
Sort based on the Solution
Kiln drying
Impact on Grade Recovery
Drying Sorted Lumber

OASIS® Software (Forintek – Eastern Lab)

Outil d'Analyse et de Simulation du Séchage

Drying Sorted Lumber

Laboratory Setup
Drying Sorted Lumber

Laboratory Setup

Collecting data before drying

Forintek Canada Corp.
Drying Sorted Lumber

Outil d'Analyse et de Simulation du Séchage

Drying Sorted Lumber
Drying Sorted Lumber

Optimized Solution

MC/Density - NMI
Drying Sorted Lumber

Results

<table>
<thead>
<tr>
<th>Species</th>
<th>High Sort</th>
<th>Low Sort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spruce</td>
<td>15</td>
<td>11</td>
</tr>
</tbody>
</table>

Spruce-Pine Measured Unsorted IMC

DryTech 2006
Drying Sorted Lumber

Results from OASiS

Spruce & Pine
- Unsorted
 - NMI ≤ 29 (Low Sort)
 - NMI > 29 (High Sort)

Sub-alpine fir
- Unsorted
 - NMI ≤ 45 (Low Sort)
 - NMI > 45 (High Sort)

Histogram _ Basic Density for spruce-pine combined

Histogram _ Basic Density (sub-alpine fir)
Spruce - Pine

Final Moisture Content Distribution

<table>
<thead>
<tr>
<th>Variable</th>
<th>Unsorted</th>
<th>High Sort</th>
<th>Low Sort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>13.5</td>
<td>13.7</td>
<td>12.8</td>
</tr>
<tr>
<td>St Dev.</td>
<td>2.8</td>
<td>2.5</td>
<td>1.9</td>
</tr>
<tr>
<td>Max</td>
<td>33.4</td>
<td>26.7</td>
<td>20.9</td>
</tr>
<tr>
<td>Min</td>
<td>6.9</td>
<td>7.9</td>
<td>7.1</td>
</tr>
</tbody>
</table>

Spruce/Pine - Babine Schedule

<table>
<thead>
<tr>
<th>Time (hr/min)</th>
<th>39:00:00</th>
<th>44:00:00</th>
<th>31:00:00</th>
</tr>
</thead>
</table>

Drying Curves

2x4 Spruce/Pine (Babine Schedule)
Drying Sorted Lumber

Degrade Analysis

<table>
<thead>
<tr>
<th>Value CAD</th>
<th>Unsorted</th>
<th>High Sort</th>
<th>Low sort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green Value</td>
<td>1,902.49</td>
<td>1,978.96</td>
<td>1,904.43</td>
</tr>
<tr>
<td>Dry Value</td>
<td>1,851.01</td>
<td>1,923.76</td>
<td>1,837.42</td>
</tr>
<tr>
<td>Diff</td>
<td>51.48</td>
<td>55.20</td>
<td>67.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wet at the of drying</th>
<th>Unsorted</th>
<th>High Sort</th>
<th>Low sort</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>21</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>%</td>
<td>2.9</td>
<td>2.4</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Results for sub-alpine fir

Change in Grade

<table>
<thead>
<tr>
<th>Change in Grade</th>
<th>Low Sort (NMI < 45)</th>
<th>High Sort (NMI > 45)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0% 20% 40% 60%</td>
<td>0% 20% 40% 60%</td>
<td>0% 20% 40% 60%</td>
</tr>
</tbody>
</table>

Forintek Canada Corp.
Drying Sorted Lumber

Drying times for sub-alpine fir

<table>
<thead>
<tr>
<th></th>
<th>Unsorted</th>
<th>High Sort</th>
<th>Low Sort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (hr:min)</td>
<td>75:30:00</td>
<td>83:30:00</td>
<td>48:00:00</td>
</tr>
</tbody>
</table>

In summary (for sub-alpine fir):

in terms of gains:

- Quality (?)
- drying times (significant benefits)

Sorting After Drying – setting up for re-drying
Drying Sorted Lumber

General diagram of lumber sorting strategies

Lumber MC distribution after typical conventional drying
Experimental kiln drying degrade as function of lumber MC

2"x4" Hem-fir lumber dried in conventional kiln

Lumber MC distribution after high-target conventional drying

Over dried
Within MC range
Wets
Drying Sorted Lumber

General diagram of Q-SIFT® dry-redry strategy

Green lumber

Conventional kiln

RF kiln

Wets

Dry lumber

Cost = $ 2,600,000

75 m³ (27,000 bf) 300 kW solid-state RFV dryer
Solid packs (no stickers) with plastic strapping
Experimental results for conventional drying to different targets

<table>
<thead>
<tr>
<th>Test</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pieces</td>
<td>378</td>
<td>392</td>
<td>393</td>
<td>196</td>
<td>196</td>
<td>392</td>
</tr>
<tr>
<td>Drying time (hr)</td>
<td>68</td>
<td>71</td>
<td>67.8</td>
<td>73.5</td>
<td>60.8</td>
<td>60</td>
</tr>
<tr>
<td>Average MC (%)</td>
<td>16.3</td>
<td>17.9</td>
<td>18.5</td>
<td>19.1</td>
<td>23.9</td>
<td>28.9</td>
</tr>
<tr>
<td>Standard deviation (%)</td>
<td>3.9</td>
<td>4.4</td>
<td>4.4</td>
<td>7.2</td>
<td>5.5</td>
<td>6.7</td>
</tr>
<tr>
<td>Wets (%)</td>
<td>3.7</td>
<td>6.4</td>
<td>13.9</td>
<td>19.9</td>
<td>47.3</td>
<td>62.6</td>
</tr>
<tr>
<td>Drying degrade (%)</td>
<td>10.6</td>
<td>6.9</td>
<td>4.6</td>
<td>9.7</td>
<td>0.5</td>
<td>1.8</td>
</tr>
</tbody>
</table>

DryTech 2006
Potential lumber value increase based on re-drying using RF

Target MC for conventional drying (%)

Potential value increase after RF re-drying ($/Mfbm)

Economic analysis for Q-SIFT® strategy

<table>
<thead>
<tr>
<th>Q-SIFT® economic analysis for 2"x4" Hem-fir lumber</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>First pass MC target</td>
<td>18.4 %</td>
</tr>
<tr>
<td>RF re-drying</td>
<td>16 %</td>
</tr>
<tr>
<td>Lumber production</td>
<td>~130 MMfbm/year</td>
</tr>
<tr>
<td>Drying time reduction</td>
<td>5.4 %</td>
</tr>
<tr>
<td>Kiln drying degrade reduction</td>
<td>3.7 %</td>
</tr>
<tr>
<td>Estimated Potential revenue increase</td>
<td>$17.5/Mfbm</td>
</tr>
<tr>
<td>Expected Payback time for RFV kiln</td>
<td>14.2 months</td>
</tr>
</tbody>
</table>
Making sense of Industrial drying information

The End

Thank you