JoeScan

Scanning Innovation on the Carriage for Greater Recoveries

JoeScan

Carriage Scanning for Fun and Profit
Involved in sawmill scanning and optimization since 1993

Developed original JS-20 2002

Designed electronics for early linear edger scanner in 1996

Provided first scanners mounted to carriage 2003
JoeScan
Increase Yield

JoeScan
Increase Production
Avoid Downtime

Options

- Light Curtain
- Multi Line Laser
- Flying Spot
Slow. But can give good results*

*On perfect cone shaped logs

Less so on real logs
Most were obsolete years ago

What happens when it dies?

Hard to keep bottom sensors clean
Accurate Log Length

Some logs aren’t round
Can we do better?
Scan both sides for accurate full log optimization
JoeScan

Limit Ambient Light Particularly Sunlight

JoeScan

Flying Spot Scanner
Immune to even the brightest light

USNR LASAR™ Brochure

SICK LMS291-S05 on Stanford’s SmartTer autonomous vehicle
Log should remain still while being scanned.

Requires large standoff. Often a problem behind the carriage.
It takes light 3 picoseconds to travel just 1 millimeter.

This is a Complex technology.
What kind of scanner will work best for my carriage?

Is your carriage a bottle neck?
Consider your log supply
And how you’ll cut them

A. SPLIT TAPER
B. FULL TAPER

Flexible Placement
On or Off the Carriage
Complex systems are hard to troubleshoot

Ah! Here’s the problem
Weekends are not for fixing scanning issues
Custom Electronics
Proprietary Interfaces

Which is simpler?

Scanner
Scanner Interface
Switch
PC

or

or
A large scan area ensures good scans for a wide range of log diameters.

A small scan area is now poorly arranged for small logs.
Pulsed Multiplexed Lasers vs. Always On Lasers & multiple laser lines per image

Rugged looking

Sawmill Rugged
sealed, dry-nitrogen purged, vibration resistant, solid aluminum housing
Big knees obstruct back side scanners view of the log

New carriages should have Skinny knees
Any Questions?