New Technologies to Revolutionise Timber Buildings

Keith Crews
Professor of Structural Engineering
Centre for Built Infrastructure Research
University of Technology Sydney

Pierre Quenneville
Professor of Timber Design
The University of Auckland
Outline

- New materials and prefabrication techniques
- Advanced design technologies
- New structural concepts
- New forms of timber buildings
- Current & future R&D initiatives
New materials and prefabrication techniques
Shortcomings of current building practices
- Time and labour costs
- Not an optimal construction environment (exposed to elements)

These are forcing the industry to adjust and develop prefabricated solutions
New materials
LVL and X-LVL
Crosslam
Glulam slabs
Prefabrication techniques
Prefab wall systems

Source: Växjö University
Prefabricated slab systems
Wood Innovations 08

Advanced Design Technologies
- Cad/Cam
- efficient design procedures
- better understanding of effects of fire and earthquakes
CAD / CAM Systems

• Potential for development of cost effective, new products that will compete with existing building systems
• Recognition of need to link R&D closely with commercial viability
• Requires significant investment
More efficient design tools

- CAD software that can size and detail structural parts (e.g. CADWORKS) and design procedures …
- for connection design
- lateral load resisting systems

Urgent need to fund development and updating of both AS 1720.1 & NZS 3603 Timber Structures Design codes with software – particularly connection design
Worldwide research effort to demonstrate the behaviour of timber buildings under severe seismic loading
... and to demonstrate the fire resistance of timber buildings
New Structural Concepts
Timber-concrete composite construction
Other innovations
Multi-Storey Residential and Commercial Buildings
Development of MSTF construction

Multi-storey timber framing for buildings in North America and Europe well established, for 4 to 6 storey

9 storey residential built from “cross laminated” panels

6 storey commercial built using glulam frames and TCC floors
Concept for a proposed 6 storey building

Concrete core and Timber gravity frame
In the future, LVL core with LVL columns and LVL/concrete beams
New forms of timber buildings
First storey in concrete
Next 4 in timber
8 storey timber building in Växjö, Sweden
4 - 8 storey timber buildings
First storey in Concrete, the top 7 in timber
9 storey X-Lam Building in London

Also
8 storey in Sweden
6 storey in Ireland and all over Europe
R&D Initiatives
Current R&D

Three main research initiatives:
1. Development of multistorey timber seismic frames at UC
2. Engineered Timber Building Systems for Non Residential Applications
 - UTS and UC, funded by FWPA 2007 to 2008 ($630k)
3. Structural Timber Innovation Company
 - UC, AU & UTS, funded by NZ Gov & Industry
 - $10m NZD over five years, commencing 2008 / 09
Current R&D

• Development of New Systems:
 – Prestressed Timber Frames
 – Timber Concrete Composite flooring systems
 – Use of CAD / CAM manufacturing and prefabrication

• Assessment of Competitor Systems:
 – Currently used building systems used for floors and walls (e.g. precast / prefabricated / tilt-up conc)
Timber Framing Systems

Recent work at UC

Use of column & beam frames for multi-storey buildings in seismic areas

post tensioned LVL frames that are “self healing”
Outcomes to date

- Research to date has proven the technical viability of TCC floor systems, spanning up to 8m.
- 2 most important factors affecting the connection performance are the length of the notch and the presence of a coach screw.
- Rectangular, triangular and trapezoidal notches with coach screws or metal plates provide an excellent connection system.
- R&D for MSTF systems set to expand with formation of STIC.
Structural Timber Innovation Company (STIC)

- Focus on developing markets for “engineered” timber products in non-residential markets
- Targeting Commercial & Industrial Buildings
- Three Main Programs / Objectives:
 - Roof Systems
 - Floor Systems
 - Wall and Framing Systems
- R&D driven by Researchers & Industry Partners
Market Development Focus

New Zealand:

- 6 to 8 storey timber framed buildings
- Seismic performance requirements
- Large spanning floors & roofs for commercial & industrial
Market Development Focus

Australia:

- 2 to 3 storey timber framed buildings
- Gravity & Wind performance requirements
- Large spanning floors & roofs for commercial & industrial, perhaps in combination with precast concrete systems
CONCLUSIONS

- exciting times for structural timber, but with some significant challenges
- new concepts and improved design techniques
- new structural materials and prefabrication
- timber buildings are taking new forms
- current significant investment in R&D as an “enabler” for timber!
Thank you for your attention