SCAN TECH 2008

TECHNOLOGY ADVANCES in STEM SCANNING and OPTIMIZATION

Presented by Dick Komori
Merchandizing Systems

Fibre Supply

ScanTECH 2008
Merchandizer Systems
Stem Infeed System
Merchandizing Systems

Merchandizer

[Image of a merchandizing system with multiple saws and logs]

MPM Bucking Log Sorting Rotation Primary Pattern Controls Lumber Sorting
Merchandizing Systems

Merchandizer Outfeed
Merchandizer Systems
Scanning Configurations

- No Scanning - Manual Bucking
- Cut to Length Logs delivered to processing plant
- Single or Dual Axis Scanning
- True Shape 3D Scanning – Geometric Only
- Enhanced 3D Scanning – Gray Scale and Tracheid
- X-Ray Internal Scanning
Merchandizing Systems
Lineal Scanner Arrangements

X-Y Scanner Arrangement

True Shape 3D Scanner
Merchandizing Systems
Transverse Scanner Arrangements

X-Y Scanner Arrangement

True Shape 3D Scanner
Merchandizing Systems
Comparison of Value Recovery

Range of performances: 2.49$/m^3

<table>
<thead>
<tr>
<th>Conveyor and scanner combinations</th>
<th>Value (in $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfect</td>
<td>115.36</td>
</tr>
<tr>
<td>Lineal - TS</td>
<td>114.84</td>
</tr>
<tr>
<td>Lineal - Part TS</td>
<td>113.33</td>
</tr>
<tr>
<td>Transverse - AIxY</td>
<td>113.22</td>
</tr>
<tr>
<td>Transverse - TS</td>
<td>112.86</td>
</tr>
<tr>
<td>Lineal - XY - TwoBanks</td>
<td>112.44</td>
</tr>
<tr>
<td>Transverse - TS OneBank</td>
<td>112.36</td>
</tr>
</tbody>
</table>
Profile Log Scanning

Scanner Systems for all Types of Logs Utilizing a Variety of Scanners
Profile Log Scanning

Scanner Manufacturers

- Hermary Opto HDS Shadow Scanner
- Hermary Opto DPS 4024 S2/VE – 3D Log Scanner
- LMI PL2000 Series 3D Log Scanner
- LMI L4 - Multiprofile Log Scanner
- SICK/IVP Ruler E 1200 3D Scanner
- ScanMeg Type D – Shadow Scanner
- ScanMeg – Profile Scanner
- Joe Scan JS-20 True shape Scanner
- Tree D T261 - Profile Scanner
Profile Log Scanning

OEM Scanner Manufacturers

- USNR Tri Cam – Laser Profile Scanner
- Microtec
- Sprecher
- Newnes McGehee – LPL True Shape Scanner
- Comact C1 Scan - True Shape Scanner
Profile Log Scanning

Hermary Opto HDS

HDS 050 High Definition Scanner Head

Hermary Opto Electronics Inc.

Sensing Solutions
Profile Log Scanning
True Shape (3D) Scanner System
Profile Log Scanning

DPS 4024 Laser Profile Scanner Head

Hermary Opto Electronics Inc.
Sensing Solutions
Profile Log Scanning
Hermary Opto DPS 4024 Scanner

- Co-planar optical geometry
- Dual Cameras and Dual Lasers for S2 version
- Point density of 3 to 5 mm around the log
- High Scan rate of up to 1000 Hertz
- Factory calibrated to a resolution of +/- 0.06mm
- Excellent ambient light immunity
- Visible laser (class 2 laser)
- Self contained in a compact rugged enclosure
- Upgradeable to add Gray Scale Data with VE option
DPS-4024VE Type VE & S2

Laser 0 is used for two geometric images and Laser 1 is used for two greyscale images

DPS-4024S2

Both Laser 0 and Laser 1 are used for geometric scanning
Cat Face Occlusions
DPS Advantage
DPS LOG SPLIT DETECTION
Profile Log Scanning
SICK/IVP Ruler Scan Head
Profile Log Scanning
SICK/IVP Ruler E 1200

- Laser/Camera based Scanner
- Typical 500mm X 1550 mm Field of View
- High Scan rate of up to 2,000+ Hertz
- Factory calibrated to 0.40 mm
- Excellent ambient light immunity
- Visible laser (Class IIIb laser)
- Self contained in a compact rugged enclosure
- Upgradeable to add Gray Scale and Laser Scatter (Tracheid) Data
Profile Log Scanning
SICK/IVP Scanner Arrangement
Profile Log Scanning
SICK/IVP Scanner Frame
Profile Log Scanning
IVP Ruler Enhanced Images

- Gray Scale Image
- Laser Scatter (Tracheid Effect)
Profile Log Scanning

IVP Ruler Enhanced Images - Bark

Bark – Gray Scale Image
Profiles Log Scanning
LMI 2000 Series Scan Head

- Models PL 2010 / PL 2020 / 2040
- High Scan Rates 250hertz or 1000 hertz
- Dual Triangulation Cameras with Single Laser Line to Eliminate Shadowing Effect
- Gigabit Ethernet Communication
- Color Vision Sensors can be Added to Enhance Log Surface Feature Detection

DynaVision® SENSORS THAT SEE™
Profile Log Scanning
LMI 2000 Series Scan Head

DynaVision®
SENSORS THAT SEE™
Profile Log Scanning

LMI 2000 Series Scan Head
Profile Log Scanning

LMI 2000 Series Scan Head

![Image of Profile Log Scanning with LMI 2000 Series Scan Head]
Profile Log Scanning
JoeScan JS-20 Series Scan Head

- 200 hertz scan rate
- +/- 0.030” (0.75mm) resolution
- Visible Class IIIa Laser
- Laser is turned off whenever the scan conveyor is stopped
Profile Log Scanning
JoeScan JS-20 Series Scan Head
Profile Log Scanning

JoeScan JS-20 Series Scan Head
Profile Log Scanning

JoeScan JS-20 Series Scan Head
Log Bucking Optimizer

Greatly Increases Recovery by Determining Optimum Log Lengths
Log Bucking Optimizer

Optimization Features

- Product Fit Value based Optimization
- Optimization based on the Bucking system capabilities. (Fixed or Shifting Saws)
- Optimization based on Primary Breakdown Machinery Capabilities and Capacities
- Graphical User Interface for Display and Setup
- Reoptimization for Analysis and Troubleshooting
- Production Reports
Log Bucking Optimizer

Enhanced Optimization Feature

- Limit Product Fit of Lumber Products based on the Log Quality
- Optimization for Posts and Utility Poles
- Optimization for Plywood Blocks
- Optimization for Speciality Products
Log Bucking Optimizer

Typical Solution Display
Log Bucking Optimizer

Cat Face Detection
Log Bucking Optimizer

Optimized Solution with Grading
Log Bucking Optimizer

Optimization of Defects

- Bark Thickness Allowance
- Butt Flare
- Pistol Butts
- Sweep and Crook
- Broken Ends
- Defects
- Cat Face
- Nodal Swelling
Log Bucking Optimizer

Defects

Cutplan Properties

Options:
- Bunk
- Flop
- Broken end
- Polyp gap
- Defect
- Grading
- Nominal lengths
- Splits costs
- Breakdown machines
- ChipNGain

Enable detect detection

Detection:
- Minimum length from log end: 0.090 in
- Maximum length from log end: 3.000 in
- Detection diameter ranges:
 - From (in): 1.000
 - To (in): 3.500
 - Excessive: 3.000

Maximum number of defects per item: 3
Minimum length between defects: 18.000 in
Maximum minor defect score offset: 0.000 in

Resolution:
- Minimum ten length: 4.000 in
- Maximum ten length: 50.000 in

Help OK Cancel
Wood-X CT System
X-ray Computer Tomography System for Grading Logs, Timber and Boards

Courtsey of Dr. Antti Kari
© Copyright Bintec Oy
BINTEC - History

- Product Development from 1989 to 1994
- Trial Installations from 1995 to 1999
- First Installation sold in 2002
- Currently six (6) systems in operation with a 7th on order
- Feed Speeds to 240 m/min
- Log Diameters up to 500mm
- Spruce, Pine and Birch
Bintec – Four (4) Direction Xray
Bintec - Schematic of Scan Zone
Which Features should be measured?

Examples:
- Quality of knot groups
- Nails
- Diameters
- Year rings
- Stones
- Density
- Quality of knot groups

All Features: See Fig. 7
Visibility of Features
How many directions? 1-2 or 4

Fig. 1: One direction
These will be seen as equal size, cover each other

Fig. 2: Four directions

X-ray tube
Bintec - Visualization

Visualization of Features based on real measured data
Note quality of knots
Bintec - Accuracy and Reliability

<table>
<thead>
<tr>
<th>Features</th>
<th>Accuracy (225 kV system)</th>
<th>4D</th>
<th>2D</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ID of Butt, Middle or Top Log</td>
<td>based on specified features</td>
<td>>95%</td>
<td>*</td>
</tr>
<tr>
<td>• ID of Log by Log</td>
<td>based on specified features</td>
<td>>95%</td>
<td>*</td>
</tr>
<tr>
<td>• Diameter under bark</td>
<td>+/-1-1.5 mm</td>
<td>>95%</td>
<td>70%</td>
</tr>
<tr>
<td>• Diameter of the heartwood</td>
<td>+/- 2 mm</td>
<td>>95%</td>
<td>*</td>
</tr>
<tr>
<td>• Number of knot clusters</td>
<td>+/- 0</td>
<td>>95%</td>
<td>85%</td>
</tr>
<tr>
<td>• Distance of the knot clusters</td>
<td>+/- 3-5 mm</td>
<td>>95%</td>
<td>85%</td>
</tr>
<tr>
<td>• Knotless surface quality</td>
<td>0 - 10, worst/best</td>
<td>>95%</td>
<td>*</td>
</tr>
<tr>
<td>• Knot volume</td>
<td>+/- 5 %</td>
<td>>90%</td>
<td>*</td>
</tr>
<tr>
<td>• Knot volume in sectors, min/max</td>
<td>4 x 90°</td>
<td>>90%</td>
<td>*</td>
</tr>
<tr>
<td>• Quality of knot clusters</td>
<td>0 - 10, worst/best</td>
<td>>95%</td>
<td>*</td>
</tr>
<tr>
<td>• Ingrowth knots</td>
<td>position in length</td>
<td>>90%</td>
<td>*</td>
</tr>
<tr>
<td>• Ring width</td>
<td>+/- 1-1.5 mm</td>
<td>>90%</td>
<td>*</td>
</tr>
<tr>
<td>• Density</td>
<td>+/- 5 %</td>
<td>>95%</td>
<td>*</td>
</tr>
<tr>
<td>• Strength grading parameters</td>
<td>f (knots, ring width, density)</td>
<td>>95%</td>
<td>*</td>
</tr>
<tr>
<td>• Compression wood</td>
<td>position in length</td>
<td>>80%</td>
<td>*</td>
</tr>
<tr>
<td>• Slope of grain</td>
<td>position in length</td>
<td>>80%</td>
<td>*</td>
</tr>
<tr>
<td>• Pitch</td>
<td>position in length</td>
<td>>90%</td>
<td>*</td>
</tr>
<tr>
<td>• Resin pockets</td>
<td>resin</td>
<td>>85%</td>
<td>*</td>
</tr>
<tr>
<td>• Foreign objects</td>
<td>stones, metals</td>
<td>>85%</td>
<td>*</td>
</tr>
<tr>
<td>• Rot</td>
<td>volume/rate</td>
<td>>80%</td>
<td>*</td>
</tr>
<tr>
<td>• Cracks (open), depth and length</td>
<td>width > 3 mm</td>
<td>>80%</td>
<td>*</td>
</tr>
<tr>
<td>• Pine, spruce, birch</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technical accuracy for all measuring +/- 1 mm

*) Measuring unreliable because of too few directions
Bintec – Log Grading Installation

OUTFEED CONVEYOR

OPERATOR BOOTH

INFEED CONVEYOR

AIR CONDITIONED BUILDING HOUSING BINTEC XGT AND GEOMETRIC SCANNERS
What Our Customers Say

• "The most modern and most efficient log grading technology in the world”

• "The productivity of our sawmill has improved by 10 %”

• "We are able to grade reliably up to 15 000 logs per shift”

• "Due to increased product quality our customers obtain the same output with 25-30% less lumber”
How can Computer Tomography system benefit your operation?

• What feature do you want to measure and how accurately?

• How reliable should the measuring feature by feature be?

=> Technical Measuring Accuracy and Need of Amount of Measuring Directions
Breakdown Optimization Modeling

Forintek's Sawing Optimization Model Optitek® has been adapted to consider internal defects in solutions.
Knot Data Collection Method
Sample Stems and Logs
Summary

<table>
<thead>
<tr>
<th>Technologies</th>
<th>Lumber volume, fbm/stem</th>
<th>Value recovery, $/stem, as % of Future X-ray</th>
<th>Optimum bucking solutions, ft Segm. 1,2,3,4, . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>Future X-ray (All knots are detected)</td>
<td>127.33</td>
<td>45.12 100%</td>
<td>12, 12, 14, 12</td>
</tr>
<tr>
<td>Current (Only external shape is scanned)</td>
<td>125.33</td>
<td>43.22 95.8%</td>
<td>12, 20, 16</td>
</tr>
<tr>
<td>X-Ray (A subset of knots are detected by the scanner)</td>
<td>127.33</td>
<td>45.05 99.8%</td>
<td>12, 12, 14, 12</td>
</tr>
</tbody>
</table>
Future CT X-Ray Images