SAWTech 2005
Sawing Technologies to Improve Mill Performance

Sawing Machine Centre Evaluation

Louw van Wyk, Sawmill Productivity Solutions

Productivity ratios:
Quantity or value of output for a given quantity of input

- Labour Productivity:
 - sawn production per man-hour
- Raw-material Productivity:
 - sawn production per ton of log
- Capital Productivity:
 - sawn production per $ invested
SAWMILL PRODUCTIVITY TOOLS

• Random Activity Sampling
• Digital Video Time Studies
• Sawlog Simulation and Saw Pattern Evaluation
• Sawmill Optimisation
• Mill Flow Dynamics
• Other Monitoring Tools
• Calibration and Correction Factors

Random Activity Sampling
Random Activity Sampling

Date: Location: Observer:
Number of machine centres: 6
Time between observations: 3 Minutes
Start time: 8.0 Hours
Finish time: 16.0 Hours
Duration: 480.0 Minutes

Work

<table>
<thead>
<tr>
<th>Time</th>
<th>Machine Working</th>
<th>Normal</th>
<th>Not Scheduled</th>
<th>Waiting for Input</th>
<th>Outfeed blocked</th>
<th>Machine Adjustment</th>
<th>Active Maintenance</th>
<th>Break</th>
<th>Scheduled Break</th>
<th>Accident</th>
<th>No operator</th>
<th>Manual Interruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 a.m.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8:03 a.m.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8:06 a.m.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8:09 a.m.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8:12 a.m.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8:15 a.m.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8:18 a.m.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8:21 a.m.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>8:24 a.m.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8:27 a.m.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8:30 a.m.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8:33 a.m.</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Random Activity Sampling

Minutes per Shift:
- Working Normal
- Not Scheduled
- Waiting for Input
- Outfeed blocked
- Machine Adjustment
- Active Maintenance
- Broken/Walked
- Scheduled Break
- Accident
- No operator
- Manual Interruption

Activities
Random Activity Sampling.

Lost Time Analysis

- Waiting for Input: 8%
- Outfeed blocked: 2%
- Working Normal: 90%

Digital Video Time Studies

- Break-points must be defined
- Easy to do
- Accurate
- Video can be played back frame by frame
- All frames are numbered to give accurate cycle times
Sawlog Simulation and Saw Pattern Evaluation

Have standards for:
- Processing time
- Conversion %
- Machine demands
- Value recovery
 for each log type and each sawpattern

Simulated Volume Recovery using Actual Log Shapes
(SED, LED, Length & Sweep)
Sawmill Optimisation

Use SOLVER in Excel Spreadsheet

Remember the ABC’c of Optimisation:
- **A** Adjustable cells.
- **B** Best cell.
- **C** Constraints.
- **D** Data block.

SPREADSHEET SOLUTION USING SOLVER

<table>
<thead>
<tr>
<th>RESOURCES</th>
<th>TOTAL</th>
<th>TOTAL</th>
<th>SCALED</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE</td>
<td>CASIO</td>
<td>VALUE</td>
<td>UNITS</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>LOGS</td>
<td>CONSTRAINTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1 450-mm</td>
<td>($200)</td>
<td>($17,841)</td>
<td>89</td>
</tr>
<tr>
<td>P2 350-mm</td>
<td>($150)</td>
<td>($15,000)</td>
<td>100</td>
</tr>
<tr>
<td>SUM</td>
<td></td>
<td></td>
<td>189</td>
</tr>
<tr>
<td>TIMBER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLEAR 1&2</td>
<td>$850</td>
<td>$46,750</td>
<td>55</td>
</tr>
<tr>
<td>FACT & SHOP</td>
<td>$500</td>
<td>$6,001</td>
<td>12</td>
</tr>
<tr>
<td>NO 1&2FRAMING</td>
<td>$350</td>
<td>$10,005</td>
<td>29</td>
</tr>
<tr>
<td>BOX</td>
<td>$150</td>
<td>$2,248</td>
<td>15</td>
</tr>
<tr>
<td>SUM</td>
<td></td>
<td></td>
<td>111</td>
</tr>
<tr>
<td>MACHINES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SORTER PIECES</td>
<td>($10,000)</td>
<td>($10,000)</td>
<td>2903</td>
</tr>
<tr>
<td>MAXIMISED OBJECTIVE:</td>
<td>$22,164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conversion %</td>
<td>58.4%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SawTech 2005
Mill Flow Dynamics

• Draw mill flow in terms of:
 – Process
 – Merge
 – Sort

• Watch out for Merge nodes as they can cause re-occurring delays
Other Monitoring Tools

- Statistical Quality Control
- Use Simple rules.
- Instead of Complicated Mathematics use the out of control rule of 7:
 - Seven readings above the line
 - Seven readings in a row going down (or up)
 - Seven readings below the line

Thickness Board #13a23
45mm Gauged Nominal, 51.5mm Target

Thickness (mm)

Savings Potential by Reducing Sawkerf

Savings $ per Year

Machine Centre

Machine Centre

SLABBER HEADRIG HORI GANG EDGER

$300,000 $250,000 $200,000 $150,000 $100,000 $50,000 $0 ($50,000)
Calibration and Correction Factors

- Measuring equipment must be calibrated from time to time.
 - Check electronic calipers every 3 months
 - Check digital multimeters every year. Replace battery when warning sign shows.
- Correction factors may have to be applied to compensate for season or log resource.
Take Home Message

- Keep studies simple
- Involve staff at all levels
- Use the studies as an opportunity to identify literacy and numeracy training needs
- Help staff to improve skills